On the boundedness of multilinear Fourier multipliers on Hardy spaces
نویسندگان
چکیده
In this paper, we study multilinear Fourier multiplier operators on Hardy spaces. particular, prove that the operator of Hörmander type is bounded from $${H^{{p_1}}} \times \cdots {H^{{p_m}}}$$ to Hp for 0 < p1, …, pm ≤ 1 with 1/p1+ ⋯ + 1/pm = 1/p, under suitable cancellation conditions. As a result, extend trilinear estimates in [17] general ones and improve boundedness result [18] limiting situations.
منابع مشابه
Boundedness for Multilinear Marcinkiewicz Operators on Certain Hardy Spaces
The boundedness for the multilinear Marcinkiewicz operators on certain Hardy and Herz-Hardy spaces are obtained.
متن کاملBoundedness for Multilinear Commutator of Littlewood-paley Operator on Hardy and Herz-hardy Spaces
Let 0 < q < ∞ and Lqloc(R n) = {f q is locally integrable on Rn}. Suppose f ∈ Lloc(R), B = B(x0, r) = {x ∈ Rn : |x − x0| < r} denotes a ball of Rn centered at x0 and having radius r, write fB = |B|−1 ∫ B f(x)dx and f #(x) = supx∈B |B|−1 ∫ B |f(x) − fB|dx < ∞. f is said to belong to BMO(R n), if f# ∈ L∞(Rn) and define ||f ||BMO = ||f||L∞ . Let T be the Calderón-Zygmund singular integral operator...
متن کاملBoundedness for Multilinear Littlewood-Paley Operators on Hardy and Herz-Hardy Spaces
Let T be a Calderon-Zygmund operator, a classical result of Coifman, Rochberg and Weiss (see [7]) states that the commutator [b, T ] = T (bf)−bTf (where b ∈ BMO(Rn)) is bounded on Lp(Rn) for 1 < p < ∞; Chanillo (see [2]) proves a similar result when T is replaced by the fractional integral operator. However, it was observed that [b, T ] is not bounded, in general, from Hp(Rn) to Lp(Rn) for p ≤ ...
متن کاملMultilinear Calderón-zygmund Operators on Hardy Spaces
It is shown that multilinear Calderón-Zygmund operators are bounded on products of Hardy spaces.
متن کاملOn the boundedness of the Marcinkiewicz operator on multipliers spaces
Let h(y) be a bounded radial function and Ω (y) an H function on the unit sphere satisfying the cancelation condition. Then the Marcinkiewicz integral operator μΩ related to the Littlewood-Paley g−function is defined by
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal D Analyse Mathematique
سال: 2023
ISSN: ['0021-7670', '1565-8538']
DOI: https://doi.org/10.1007/s11854-022-0268-6